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Anatomical Landmark based Deep Feature
Representation for MR Images in Brain Disease

Diagnosis
Mingxia Liu†, Jun Zhang†, Dong Nie, Pew-Thian Yap, Dinggang Shen, Fellow, IEEE

Abstract—Most automated techniques for brain disease di-
agnosis utilize hand-crafted (e.g., voxel-based or region-based)
biomarkers from structural magnetic resonance (MR) images as
feature representations. However, these hand-crafted features are
usually high-dimensional or require regions-of-interest (ROIs)
defined by experts. Also, because of possibly heterogeneous
property between the hand-crafted features and the subsequent
model, existing methods may lead to sub-optimal performances
in brain disease diagnosis. In this paper, we propose a landmark
based deep feature learning (LDFL) framework to automatically
extract patch-based representation from MRI for automatic
diagnosis of Alzheimer’s disease (AD). We first identify discrim-
inative anatomical landmarks from MR images in a data-driven
manner, and then propose a convolutional neural network (CNN)
for patch-based deep feature learning. We have evaluated the
proposed method on subjects from three public datasets, in-
cluding the Alzheimer’s Disease Neuroimaging Initiative (ADNI-
1), ADNI-2, and the Minimal Interval Resonance Imaging in
Alzheimer’s Disease (MIRIAD) dataset. Experimental results of
both tasks of brain disease classification and MR image retrieval
demonstrate that the proposed LDFL method improves the
performance of disease classification and MR image retrieval.

Index Terms—Anatomical landmarks; convolutional neural
network; classification; image retrieval; brain disease diagnosis.

I. INTRODUCTION

Alzheimer’s disease (AD) is an increasingly prevalent dis-
ease, characterized by the accumulation of amyloid-β (Aβ)
and hyperphosphorylated tau in the brain that eventually leads
to neurodegeneration [1]. The accurate diagnosis of AD is of
great importance for possible improvement in the treatment of
the disease and is expected to help reduce costs associated with
long-term care for patients. To support AD diagnosis, many
computer-aided approaches have been proposed using various
biomarkers. Compared with the accumulation of Aβ detected
in cerebrospinal fluid (CSF) or by using positron emission
tomography (PET) [2], [3], biomarkers based on structural
magnetic resonance imaging (MRI) could suggest structural
changes of the brain in a more sensitive manner [4], [5].

Currently, many global and relatively local biomarkers
(shown in Fig. 1) have been proposed for AD diagnosis with
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Voxel-based measure Patch-based measure

Local

Fig. 1. Illustration of MRI biomarkers for brain disease diagnosis shown in
a local-to-global manner, including high-dimensional-morphological measure
(e.g., voxel-based representation), ROI-based measure, and the proposed
patch-based measure.

MRI data, including global region-of-interest (ROI) based vol-
umetric measures and local high-dimensional-morphological-
analysis (HDMA) based measures. Specifically, ROI-based
measures (e.g., cortical thickness [6]–[10], hippocampal vol-
ume [11]–[13], and gray matter volume [14], [15]) are tradi-
tionally adopted to measure regionally anatomical volume and
to investigate abnormal tissue structures in the brain. However,
the definition of ROIs usually requires a priori hypothesis on
the abnormal regions from a structural/functional perspective,
requiring expert knowledge in practice [16]. Also, an abnormal
region might be only a small part of a pre-defined ROI
or span over multiple ROIs, thereby leading to loss of dis-
criminative information. In addition, ROI-based measurements
depend largely on two time-consuming steps that reduce the
feasibility of timely AD diagnosis: 1) non-linear registration
across subjects, and 2) brain tissue segmentation [17]. As an
alternative solution, HDMA-based measures capture localized
structural changes in a hypothesis-free manner to quantify
brain atrophy, among which voxel-based morphometry (VBM)
[15], [18]–[20], deformation-based morphometry (DBM) [21],
and tensor-based morphometry (TBM) [22] are the typical
examples. Specifically, VBM directly measures local tissue
(e.g., gray matter, white matter and cerebrospinal fluid) density
of a brain via voxel-wise analysis, DBM detects morphological
differences from non-linear deformation fields that align/warp
images to a common anatomical template, and TBM identifies
regionally structural differences from local Jacobians of de-
formation fields, respectively. While the number of subjects is
often limited (e.g., in hundreds), HDMA-based measurement
is generally of very high dimension (e.g., in millions), leading
to the over-fitting problem in subsequent learning models [23].
Also, the HDMA-based measure is usually limited by registra-
tion errors or inter-subject anatomical variations. Therefore, it
is desirable to extract discriminative biomarkers from MRI in a
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Fig. 2. Illustration of the proposed anatomical Landmark based Deep Feature Learning (LDFL) framework. There are four main components: 1) landmark
discovery, 2) landmark-based patch extraction, 3) patch-based feature learning, and 4) applications of disease classification and image retrieval.

semi-global manner, independent of any pre-defined ROIs and
time-consuming pre-processing procedures, which may result
in better performance in brain disease diagnosis.

In this study, we propose an anatomical landmark based
deep feature learning (LDFL) framework for AD diagnosis
(see Fig. 2), by extracting patch-based measures from struc-
tural MR imaging data. Different from conventional ROI-based
and voxel-based feature representations for MR images, we
develop a novel patch-based feature extraction method for
computer-aided brain disease diagnosis with MRI data. Specif-
ically, we first identify discriminative anatomical landmarks
via group comparison between AD and normal control (NC)
subjects, and then learn patch-based feature representations
from each landmark location via a deep convolutional neural
network (CNN) [24]. The effectiveness of the proposed LDFL
method is validated in both tasks of brain disease classification
and MR image retrieval. The major contributions of this work
can be summarized as follows. First, the proposed feature
representation can be automatically learned from MR imaging
data, without using pre-defined ROIs and time-consuming pre-
processing procedures (e.g., brain tissue segmentation). Sec-
ond, we propose to locate the most informative image patches
from MRI with millions of patches based on anatomical land-
marks. Third, we use the Alzheimer’s Disease Neuroimaging
Initiative (i.e., ADNI-1) [25] as the training set, and ADNI-2
and MIRIAD as independent testing sets.

II. MATERIALS AND METHODS

A. Data Preparation

Our analysis is based on three public datasets, including
the Alzheimer’s Disease Neuroimaging Initiative (ADNI-1)
dataset [25], ADNI-2, and the Minimal Interval Resonance
Imaging in Alzheimer’s Disease (MIRIAD) dataset1. There
are a total of 199 AD and 229 NC subjects with 1.5T T1-
weighted structural MRI data in the baseline ADNI-1 dataset,

1http://www.ucl.ac.uk/drc/research/methods/miriad-scan-database

whereas the baseline ADNI-2 dataset contains 159 AD and
200 NC subjects with 3T T1-weighted structural MRI data.
Note that in our experiments, several subjects that appear in
both ADNI-1 and ADNI-2 are removed from ADNI-2 for
independent testing. The general inclusion/exclusion criteria
used by ADNI-1 are summarized as follows: 1) NC subjects:
Mini-Mental State Examination (MMSE) scores between 24-
30 (inclusive), a Clinical Dementia Rating (CDR) of 0, non-
depressed, non-MCI and non-demented; 2) mild AD: MMSE
scores between 20-26 (inclusive), CDR of 0.5 or 1.0 and
meets NINCDS/ADRDA criteria for probable AD. There are
23 NCs and 46 AD patients with baseline 1.5T T1-weighted
MRI in MIRIAD. In the main experiments, ADNI-1 is used
as the training set, while ADNI-2 and MIRIAD are adopted
as independent testing sets. The demographic and clinical
information of subjects is reported in Table I.

In this study, we process all MR images using a standard
pipeline. More specifically, we first perform anterior commis-
sure (AC)-posterior commissure (PC) correction for each MR
image, using the MIPAV software package. We then re-sample
each MR image to have a resolution of 256× 256× 256, fol-
lowed by intensity inhomogeneity correction for images using
the N3 algorithm [26]. Also, we perform skull stripping [27]
for all MR images, as well as a process of manual editing, to
ensure that both skull and dura are cleanly removed. We finally
remove the cerebellum from each MR image, by warping a
labeled template to each skull-stripped image.

B. Method

Figure 2 illustrates a general framework of our LDFL pro-
posed method, including four main components: 1) landmark
discovery, 2) landmark-based patch extraction, 3) patch-based
feature learning, and 4) applications of disease classification
and image retrieval. For landmark discovery, we first identify
AD landmarks that have statistically significant differences
between AD and NC subjects in the training set and then
apply a pre-trained landmark detection model to automatically
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TABLE I
DEMOGRAPHIC AND CLINICAL INFORMATION OF SUBJECTS IN THE BASELINE ADNI-1 AND ADNI-2 DATABASE. VALUES ARE REPORTED AS

MEAN±STANDARD DEVIATION (STD); EDU: EDUCATION YEARS; MMSE: MINI-MENTAL STATE EXAMINATION; CDR-SB: CLINICAL DEMENTIA
RATING-SUM OF BOXES.

Dataset Category Male/Female Edu (Mean±Std) Age (Mean±Std) MMSE (Mean±Std) CDR-SB (Mean±Std)

ADNI-1
AD 106/93 13.09 ± 6.83 69.98 ± 22.35 23.27 ± 2.02 0.74 ± 0.25

NC 127/102 15.71 ± 4.12 74.72 ± 10.98 29.11 ± 1.01 0.00 ± 0.00

ADNI-2
AD 91/68 14.19 ± 6.79 69.06 ± 22.04 21.66 ± 6.07 4.16 ± 2.01

NC 113/87 15.66 ± 3.46 73.82 ± 8.41 27.12 ± 7.31 0.05 ± 0.22

MIRIAD
AD 19/27 - 69.95 ± 7.07 19.19 ± 4.01 -
NC 12/11 - 70.36 ± 7.28 29.39 ± 0.84 -

(a) 3D illustration of all identified AD-related landmarks (b) Top 50 selected landmarks
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Fig. 3. Illustration of (a) all identified AD-related anatomical landmarks from AD and NC subjects in ADNI-1, and (b) top 50 selected landmarks for
patch-level feature learning in AD diagnosis. Here, different colors denote p-values in group comparison between AD and NC groups in ADNI-1.

detect landmarks in each testing image [28]. In the stage of
landmark-based patch extraction, we extract multiple patches
from each training image based on each of multiple anatomical
landmarks. In the patch-based feature learning stage, we
develop a CNN model to learn morphological features, where
patches extracted from each landmark are used as input, and
subject-level labels for patches are adopted as output. Note
that each CNN model is corresponding to a specific landmark
position. Finally, the patch-based deep feature representations
learned from multiple landmarks are fed into subsequent
disease classification and image retrieval models.

1) Anatomical Landmark Discovery: Our goal is to identify
regions that have group differences in local brain structures
between AD patients and normal controls (NCs). Follow-
ing previous studies [28], [29], we perform a voxel-wise
group comparison between AD and NC groups in ADNI-1.
Specifically, we first linear-aligned all training images to the
Colin27 template [30] to remove global translation, as well
as the scale and rotation differences of MR images. Also,
we re-sampled all images to have the same spatial resolution
(i.e., 1 × 1 × 1mm3). Then, we non-linearly aligned all
training images to the template, to build the correspondence
among voxels from different images, using the HAMMER
algorithm [31]. By using the deformation field from non-linear
registration, we can establish the correspondence between each
voxel in the template and those in the linearly-aligned images.
For each voxel in the template, we extracted two groups of
morphological features (i.e., local energy pattern [32]) from
corresponding voxels in all training images from the group of

AD patients and the group of NCs, respectively. Then, based
on the morphological features for each voxel, we performed
a multivariate statistical test (i.e., Hotelling’s T2 [33]) on
AD and NC groups, and thus can obtain a p-value for each
voxel in the template space. Given all voxels in the template,
we generated a p-value map corresponding to the template.
Finally, the local minima from the p-value map were identified
as locations of discriminative anatomical landmarks in the
template space. Finally, we projected these landmark locations
to all linearly-aligned training images using their respective
deformation fields (generated in the non-linear registration).

To fast locate anatomical landmarks for testing images, we
further trained a regression forest based landmark detector,
with landmark as output and those linearly aligned training
images as input. For a new testing MR image, we can align
it linearly to the template space and then use our trained
landmark detector to identify landmarks in the linearly-aligned
testing image. In this way, both training images and testing
images would have the same landmarks. For each MR image,
there are approximately 1700 landmarks identified from AD
and NC subjects in the ADNI-1 dataset, shown in Fig. 3 (a).

From Fig. 3 (a), we can observe that some landmarks are
very close to each other. In such a case, directly using those
landmark for patch extraction may lead to overlapped patches.
To address this issue, for all identified landmarks ranked
according to p-values in descending manner, we further define
a spatial Euclidean distance threshold (i.e., 16) to control the
distance between landmarks, to reduce the overlaps among
image patches. Finally, we select the top 50 landmarks for deep
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Fig. 4. Schematic diagram of CNN for patch-based feature learning. Conv: Convolutional layer; Pool: Pooling layer; FC: Fully connected layer.

feature learning [34], and show these landmarks in Fig. 3 (b),
Fig. S2 and Movie S1 of the Supplementary Materials.

2) Landmark-based Patch Extraction: To suppress the neg-
ative influence of landmark localization errors introduced by
image registration, we sample multiple image patches (with
the size of 19 × 19 × 19) from each landmark location with
displacements in a 3×3×3 cubic. Hence, there are 27 image
patches extracted from a specific landmark position in an MR
image of a specific subject. The class label of each image patch
is assigned as the same label of that subject (i.e., subject-
level label). The influence of parameters (i.e., the number
of landmarks and size of patches) is shown in Fig. S1 in
Supplementary Materials.

3) Patch-based Feature Learning: We develop a CNN
model [35] to extract discriminative patch-based biomarkers
from MRI for AD diagnosis, with a schematic diagram shown
in Fig. 4. As shown in Fig. 4, the input of the network include
multiple image patches extracted from a specific landmark
position in brain MR images, which are convolved by a series
of 5 convolutional layers (i.e., Conv1, Conv2, Conv4, Conv5,
and Conv7) with rectified linear unit (ReLU) activation. Here,
Conv2, Conv5, and Conv7 are followed by max-pooling proce-
dures to perform a down-sampling operation for their outputs,
respectively. The size of a 3D kernel in each convolutional
layer is 3 × 3 × 3. The resulting 256-dimensional features,
which are equal to the number of feature maps of the last
convolutional layer (i.e., Conv7), are fed into a series of 3
fully connected (FC) layers (i.e., FC9, FC10, and FC11) with
dimensions of 256, 128, and 2, since 2 is the number of classes
considered. The use of FC layers accelerates convergence,
while the problem of over-fitting could be partly solved by
adding a drop-out layer (with a ratio of 0.5) before FC10.
The output of the last FC layer (i.e., FC11) is fed into a soft-
max top-most output layer, to predict the probability of an
input image patch belonging to AD or NC group. Note that
the information given by the subject-level class labels are used
in a back-propagation procedure.

Denote L as the number of landmarks, and the training
set as X = {Xn}Nn=1 that contains N subjects with the
corresponding labels y = {yn}Nn=1. We denote the n-th

training image as Xn = {xn,1,xn,2, · · · ,xn,L} containing
L image patches. As shown in Fig. 2, patches extracted from
training images are the basic training samples for our proposed
CNN model, and the labels of those patches are subject-
level labels. That is, the subject-level label information (i.e.,
yn(n = 1, · · · , N)) is used as the supervision information for
network training. More specifically, the proposed CNN aims
to learn a mapping function Φ : X → y. For the l-th CNN
model corresponding to the l-th (l = 1, · · · , L) landmark, the
objective function is shown as follows:

min
Wl

∑
{xn,l∈Xn}N

n=1

−log (P(yn|xn,l;Wl)) (1)

where P(yn|xn,l;Wl) indicates the probability of the patch
xn,l being correctly classified as the class yn using the network
coefficients Wl.

The implementation of the proposed CNN model is based
on Caffe [36], and the computer we used in the experiments
contains a single GPU (i.e., NVIDIA GTX TITAN 12GB). The
network is optimized by stochastic gradient descent (SGD)
algorithm [37] with a momentum coefficient of 0.9. The
learning rate is set to 10−2, and the weight updates are
performed in mini-batches of 30 samples per batch. Here, we
further randomly select 10% subjects in ADNI-1 as validation
data, while the remaining in ADNI-1 are regarded as the
training data. The training process ends when the network does
not significantly improve its performance on the validation set
within 60 epochs.

4) Applications of Disease Classification and MR Image
Retrieval: Given L (L = 50 in this study) anatomical
landmarks, we can train L CNN models, and each model is
corresponding to a specific landmark. In this way, for each
MR image, we can obtain L feature vectors via those CNN
models. For brain disease classification, we simply combine
the estimated patch labels in 50 landmark locations achieved
by CNNs using the majority voting strategy [38]. For the task
of MR image retrieval, we use the outputs from three FC layers
(i.e., FC9, FC10, and FC11) of each CNN as patch-based
feature representations, and compare them with conventional
representations for MRI in the experiments.
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III. EXPERIMENTS

A. Methods for Comparison

We compare our proposed LDFL method with three state-
of-the-art feature representations for MR images, including
1) ROI-based representation [10], [39], 2) voxel-based mor-
phometry (VBM) representation [18], 3) landmark-based mor-
phology (LMF) representation [28]. We briefly introduce these
three methods as well as our method in the following.

1) ROI-based (ROI) representation. Following previous
studies [10], [39], we extract ROI-based features from MR
images in this method. To be specific, we first segment the
studied MR image into three tissue types, including gray mat-
ter (GM), white matter (WM), and cerebrospinal fluid (CSF),
by using the FAST algorithm in the FSL software. Then, we
align the anatomical automatic labeling (AAL) atlas [40] with
(90 pre-defined ROIs in the cerebrum) to the native space of
each subject using a deformable registration algorithm (i.e.,
HAMMER [31]). We finally extract the volumes of GM tissue
in 90 ROIs as feature representation for each MR image.
Note that the volumes of GM tissue are normalized by the
total intracranial volume (estimated by the summation of GM,
WM, and CSF volumes). In the classification task, we feed
the ROI features into a linear support vector machine (LSVM)
classifier [41] for disease classification. In the image retrieval
task, we adopt these ROI features to represent each MRI.

2) Voxel-based morphometry (VBM) representation [18]:
Similar to the pre-processing procedure used in the ROI-based
method, we first normalize the studied MR images using
the same registration and segmentation methods. Then, we
extract the local tissue density of GM in a voxel-wise manner
as feature representations for an MR images. To reduce the
feature dimension, we further perform the t-test algorithm to
select the most informative features. Those selected voxel-
based features are finally fed into an LSVM for classification
and used as the representation for each MRI in the task of
image retrieval.

3) Landmark based morphology (LMF) based repre-
sentation [28] with engineered feature representations. In
LMF, we first extract morphological features (i.e., local en-
ergy pattern [32]) from each local image patch centered at
each landmark location, and then concatenates these features
extracted from multiple landmarks, followed by a z-score
normalization [42] process. Finally, the normalized features
are used in both tasks of disease classification (via LSVM) and
image retrieval. As a landmark-based method, LMF shares the
same landmark pool as our proposed LDFL method, shown in
Fig. 3. It is worth noting that, different from our proposed
LDFL approach that learns features automatically from MRI,
LMF adopts human-engineered features for representing im-
age patches around each landmark position.

4) Proposed patch-based representation. For each MR
image, we can obtain L feature vectors via the proposed
CNN model in Fig.4. We then extract three types of features
as the representation for MRI, including 1) features from
FC9 layer in the proposed CNN that is denoted as FC9 for
short, 2) features from FC10 layer (denoted as FC10), and 3)
features from FC11 layer (denoted as FC11). Similar to LMF

method, we can simply concatenate the feature vectors from
L landmarks for subsequent model learning.

In the disease classification task, we feed those ROI and
VBM features to an LSVM classifier, respectively. It is worth
noting that, for landmark-based features (i.e., LMF [28],
FC9, FC10, and FC11), we further propose two strategies to
utilize these features, including 1) feature concatenation and
2) classifier ensemble. Specifically, in feature concatenation
methods (denoted as LMF con, FC9 con, FC10 con, and
FC11 con), features learned from 50 landmarks are simply
concatenated into a long feature vector, followed by an LSVM
classifier. In ensemble based methods (denoted as LMF ens,
FC9 ens, FC10 ens, and FC11 ens), we first train an LSVM
using features obtained from each landmark position and can
obtain 50 LSVMs given 50 landmarks. Then, the results of
those LSVMs are combined by a majority voting strategy [38]
for final classification. In the image retrieval task, we compare
the proposed three types of patch-based feature represen-
tations via feature concatenation (i.e., FC9 con, FC10 con,
and FC11 con) with three conventional representations for
MRI (i.e., ROI, VBM, and LMF con). Specifically, we first
represent each MR image (w.r.t. a particular subject) using
a specific feature vector, and then compute the Euclidean
distance between a new query MR image in ADNI-2 and each
of MRI in ADNI-1.

B. Experimental Settings

The performance of disease classification is evaluated by
the following metrics: 1) classification accuracy (ACC), 2)
sensitivity (SEN), 3) specificity (SPE), 4) receiver operating
characteristic curve (ROC), 5) area under ROC (AUC), and 6)
F-Measure [44]. We denote TP, TN, FP, FN and PPV as true
positive, true negative, false positive, false negative, and posi-
tive predictive value, respectively. These evaluation metrics are
defined as: ACC= (TP+TN)

(TP+TN+FP+FN) , SEN= TP
(TP+FN) , SPE= TN

(TN+FP) , F-
Measure= (2×SEN×PPV)

(SEN+PPV) where PPV= TP
(TP+FP) . In image retrieval

experiments, we utilize four metrics for performance evalu-
ation, including 1) mean average precision (MAP) for a set
of queries that is the mean of average precision scores for
each query (where each subject with MR image in ADNI-
2 is used as a specific query), 2) F-Measure, 3) Matthews
correlation coefficient (MCC) [45] that is a balanced measure
for binary classes, and 4) #Correct@K that is the number of
correct results in top K returned results. The most relevant
results should be ranked at top-most positions resulting in
higher #Correct@K values.

C. Results

In this section, we first show the learned features and the
learned kernels by the proposed LDFL method. Then, we
report the experimental results in both tasks of disease classi-
fication and MR image retrieval, by comparing the proposed
method with those competing methods.

1) Learned Feature Representations: It is worth noting that
each layer of CNN combines the extracted low layer feature
maps to learn higher level features at the next layer, in a
hierarchical manner for describing more abstract anatomical
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Fig. 5. Manifold visualization of AD and NC subjects in the ADNI-2 dataset, by t-SNE projection [43] in learned 3D-CNN layers including (a) Conv1, (b)
Conv2, (c) Conv4, (d) Conv5, (e) Conv7, (f) FC9, (g) FC10, and (h) FC11.

variations of a brain. To analyze the discriminative capability
of the patch-based features learned from our method, we
visualize the learned features at 5 convolutional and 3 fully
connected layers in CNN, by projecting those features down
to 2 dimensions using the t-SNE dimension reduction algo-
rithm [43]. As can be seen from Fig. 5 (a-e), the convolutional
layers (i.e., Conv1, Conv2, Conv4, Conv5, and Covn7) grad-
ually enhance the discriminative power between AD and NC
subjects along the hierarchy. Also, Fig. 5 (f-h) indicate that the
subsequent task-specific classification layers (i.e., FC9, FC10,
and FC11) further enhance the separability between AD and
NC subjects, and features at the top-most FC layers (FC10,
and FC11) are most discriminative.

2) Learned Kernels in CNN: Figure 6 shows 32 convo-
lutional kernels learned at the Conv1 layer via the proposed
CNN model (see Fig. 4). From Fig. 6, one may notice the
different natures of these kernels in capturing fundamental 3D
patterns. These patterns vary complexity while passing through
consecutive convolutional layers, so that the last layer could
have the ability to describe the structural differences between
AD and NC subjects. In addition, given an input image patch,
we show the outputs of each convolutional layer in CNN in
Figs. S6-S9 in the Supplementary Materials.

3) Results of Disease Classification: In the task of brain
disease classification (i.e., AD vs. NC classification), we
first learn features from MRI data in a supervised manner
via our LDFL framework. In this group of experiments, we
treat subjects in ADNI-1 as training data, and use subjects
in ADNI-2 as independent testing data. Figure 7 reports
classification performances achieved by methods using con-
ventional features and our patch-based features, as well as
our LDFL method in AD vs. NC classification. As could be
seen from Fig. 7, methods using our patch-level deep features
usually achieve much better diagnosis results, compared with
those using conventional feature representations. For instance,
LDFL achieves the best accuracy of 90.56% and the best
F-Measure of 89.10%, while ROI, VBM, LMF con, and

LMF ens generally result in worse performance. On the other
hand, ensemble based methods usually perform better than
feature concatenation based methods. For instance, FC9 ens
achieves an AUC of 94.72%, while the AUC of its counterpart
(i.e., FC9 con) is only 91.40%. Also, among three patch-based
measures learned from different FC layers in the proposed
CNN model, the method using features extracted from the
top-most FC layer (i.e., FC11) results in the best result. That
is, FC11 ens achieves an accuracy of 88.61% and an AUC of
95.83%. It is worth noting that MR images in the training set
(i.e., ADNI-1) were acquired by 1.5T T1-weighted scanners,
while those in the testing set (i.e., ADNI-2) were acquired by
3T T1-weighted scanners. Despite the different signal-to-noise
ratios of MRI in the training and the testing set, our LDFL
method still achieves good results in AD classification. This
implies that LDFL has good generalization capability.

In Fig. 8, we further plot the ROC curves achieved by the
proposed methods and conventional approaches. As can be
seen from Fig. 8, the overall best performances are achieved
by the proposed FC11 con and LDFL methods among six
feature concatenation based methods and the five ensemble
based approaches, respectively. It further demonstrates the
effectiveness of the proposed patch-based biomarkers learned
from MR imaging data. More results are given in Fig. S4-S6
in the Supplementary Materials.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

LMF_ens

FC9_ens

FC10_ens

FC11_ens

LDFL

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate (FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 (
T

P
R

)

ROI

VBM

LMF_con

FC9_con

FC10_con

FC11_con

(a) (b)

Fig. 8. ROC curves achieved by (a) feature concatenation based methods and
(b) ensemble based methods in AD vs. NC classification. The classifiers are
trained on ADNI-1 and tested on ADNI-2.



2168-2194 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2018.2791863, IEEE Journal of
Biomedical and Health Informatics

LIU et al.: ANATOMICAL LANDMARK BASED DEEP FEATURE REPRESENTATION FOR MRI 7

-0.2
-0.1
0
0.1

-0.1
0
0.1

-0.2

0

0.2

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1
0.2

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.2
-0.1
0
0.1

-0.2

0

0.2

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.2

0

0.2

-0.2

0

0.2

-0.1
0
0.1
0.2

-0.1
0
0.1
0.2

-0.2

0

0.2

-0.2

0

0.2

-0.2
-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

-0.2
-0.1
0
0.1

-0.1
0
0.1

-0.1

0

0.1

-0.1
0
0.1

-0.1
0
0.1

-0.1
0
0.1

Fig. 6. Illustration of the learned 32 convolutional kernels (with the size of 3× 3× 3) at the Conv1 layer in the proposed CNN architecture for AD vs. NC
classification.
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4) Results of MR Image Retrieval: In the task of MR
image retrieval, subjects in the ADNI-1 dataset are used as
the existing subjects’ MRI database, while all the MR images
in the ADNI-2 dataset are alternated used as the query image.
Figure 9 reports the performance comparison of methods using
different feature representations. Figure 9 (a) implies that
methods using our patch-based deep features (i.e., FC9 con,
FC10 con, and FC11 con) usually outperform those using
conventional features (i.e., ROI, and LMF con) in MR image
retrieval. Also, the best mean average precision (MAP), F-
Measure, and Matthews correlation coefficient (MCC) are
achieved by the proposed FC11 con, FC11 con, and FC9 con
methods, respectively.

From Fig. 9 (b), we could observe that features learned from
the proposed methods result in better #Correct@K values,
compared with ROI and LMF con. For instance, FC11 con
can return 8.27 relevant subjects in top 10 returned results
and 38.23 relevant subjects in top 50 returned results. The
better performance on #Correct@K indicates that the proposed
method can return more relevant medical records. This could
be due to the discriminative features learned from landmark-
based CNN models, which can precisely locate possible rele-
vant subjects and then finally provide a fine ranking list. Given
an MR image of a query subject represented by the learned
patch-based features, it is possible to provide physicians with
useful reference from historical data (e.g., existing patients’
MRI database) to help design a subject-specific treatment plan.

IV. DISCUSSION

Although extensive studies investigate to extract different
feature representations from structural MR imaging data for
computer-aided AD diagnosis, most of them focus on global
or local measures that require time-consuming pre-processing
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procedures or depend on pre-defined ROIs, respectively. To
this end, we develop a landmark based deep feature learning
(LDFL) framework to automatically extract patch-level repre-
sentations from MR images, based on anatomical landmarks
discovered from data via a data-driven algorithm. In particular,
we first propose to identify the most discriminative anatom-
ical landmarks via group comparison between AD and NC
subjects. Given L (L = 50 in this study) landmarks, we then
train L CNN models for patch-based deep feature learning,
with each CNN corresponding to a specific landmark. Both
disease classification and image retrieval experiments on three
public datasets (i.e., ADNI-1, ADNI-2, and MIRIAD) suggest
that the proposed method could help promote the performance
of computer-aided AD diagnosis.

A. Discriminative Capability of Landmarks

Figure 10 illustrates the patch classification accuracy in
each landmark location achieved by our proposed LDFL
method. One could see from Fig. 10 that the accuracy of
patches in each CNN model is different from each other. For
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Fig. 11. Kappa-error diagram achieved by five ensemble based methods in AD vs. NC classification. The value on the x-axis denotes the kappa measure [46]
of a pair of classifiers in the ensemble, whereas the value on the y-axis is the averaged individual error of a pair of classifiers.

instance, the patch classification accuracies at the 1st landmark
and the 50th landmark positions are 80.80% and 70.87%,
respectively. Among those 50 landmarks, the best accuracies
(i.e., > 80.00%) are achieved in a subset of landmarks (i.e.,
1, 2, 4, 5, 9, 11, 13, 14, 16, 17, 21, 24, 31), implying the struc-
tural changes in these landmarks could be more discriminative
in distinguishing AD from normal controls (NCs).

From Fig. 3 (b), one may observe that landmarks in that
subset mainly locate in the areas of bilateral hippocampus,
bilateral parahippocampus, and bilateral fusiform. These areas
are reported to be related to AD in previous studies [13],
[47]–[49]. More results can be found in Figs. S2-S3 in the
Supplementary Materials. Besides, Fig. 10 suggests that the
overall performance of patch classification gradually becomes
worse with the increase of landmark index. The underlying
reason could be that the p-values (in the group comparison
between AD and NC subjects) of those 50 landmarks gradually
increase, and thus their discriminative capabilities become
worse in group comparison in the landmark discovery pro-
cess [28]. Also, the most discriminative features are learned
from patches located at the 13 th and the 14 th landmarks,
other than from patches at the first landmark location shown
in Fig. 3. The main reason is that we use hand-crafted features
(i.e., local energy pattern [32]) of MRI to identify anatomical
landmarks, while the proposed landmark-based patch-level
features are learned automatically from data for AD diagnosis.

B. Diversity Analysis
We adopt a kappa measure [46] to analyze the diversity

of classifiers in 5 ensemble-based methods for AD vs. NC

classification. The kappa measure evaluates the level of agree-
ment between the outputs of two classifiers. In Fig. 11, we
show a diversity-error diagram achieved by different methods.
For each method, the corresponding ensemble contains 50
individual classifiers for 50 landmarks. The value on the x-axis
of a diversity-error diagram denotes the kappa measure of a
pair of classifiers in the ensemble, whereas the value on the y-
axis is the averaged individual error of a pair of classifiers. As
a small value of kappa measure indicates better diversity and
a small value of averaged individual error indicates a better
accuracy, the most desirable pairs of classifiers will be close
to the bottom left corner of the graph. We further plot the
centroids of clouds achieved by different methods in Fig. 11
for visual evaluation of relative positions of kappa-error points.

Figure 11 suggests that the proposed FC11 ens method
outperforms the competing methods regarding the averaged
classification error, while our FC10 ens method achieves the
best diversity regarding kappa measure. Also, the proposed
LDFL method gives the overall best trade-off between the
classification error and the diversity of multiple classifiers,
compared with the other four methods. That is, LDFL builds
a classifier ensemble based on the reasonably accurate but
markedly diverse individual components.

C. Computational Cost

We now analyze the computational costs of the proposed
LDFL method. It is worth noting that, for our LDFL and
three competing methods (i.e., ROI, VBM, and LMF [28]), all
training processes are performed off-line. Hence, we analyze
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TABLE II
COMPUTATIONAL COSTS OF DIFFERENT METHODS IN AD VS. NC CLASSIFICATION FOR A NEW TESTING MR IMAGE.

Method Time of Each Process (Platform) Total Time

ROI

1) Linear alignment 5.00 s (C++)

∼ 32.00min
2) Non-linear registration 32.00min (HAMMER [31])
3) Feature extraction 3.00 s (Matlab)
4) Classification 0.02 s (Matlab)

VBM

1) Linear alignment 5.00 s (C++)

∼ 32.00min
2) Non-linear registration 32.00min (HAMMER [31])
3) Feature extraction 4.00 s (Matlab)
4) Classification 0.05 s (Matlab)

LMF

1) Linear alignment 5.00 s (C++)

∼ 20.00 s
2) Landmark prediction 10.00 s (Matlab)
3) Feature extraction 5.00 s (Matlab)
4) Classification 0.03 s (Matlab)

LDFL (Ours)
1) Linear alignment 5.00 s (C++)

∼ 15.00 s2) Landmark prediction 10.00 s (Matlab)
3) Joint feature extraction and classification 0.31 s (Caffe [36])

the on-line computational cost for a new testing subject with
an MR image. Specifically, in the ROI method, we first linearly
align the testing image to the template, and then use the non-
linear registration algorithm [31] to map segmentations of gray
matter (GM) and the 90 ROIs from template image to the
testing image, followed by a linear support vector machine
(SVM) classifier. Similar to ROI, we use the same registration
and segmentation strategies for voxel-based method (VBM). In
our LDFL method, we first linearly align the new testing MR
image to the template, and then predict the landmark positions
for this image. We further extract image patches from each
landmark location and feed them to the proposed CNN model
for joint feature learning and disease prediction. For LMF [28]
method, we extract morphological features [32] of the linearly-
aligned testing image based on the same landmarks as LDFL,
and then perform prediction using the linear SVM classifier.

Table II reports the computational costs of different meth-
ods. From Table II, we can see that the total computational
costs of both ROI and VBM are more than half an hour, which
is much slower than our method (15 s). Although LMF has
similar computational cost (20 s), its learning performance is
worse than our proposed LDFL method (see results in Fig. 7
and Figs. S4-S6 in the Supplementary Materials).

D. Technical Limitations

Although the proposed LDFL method achieved promising
results in both tasks of brain disease diagnosis and MR image
retrieval, several technical issues need to be considered. First,
the anatomical landmarks used in this study is pre-defined
in our previous study [28]. That is, the process of landmark
definition is independent of our proposed patch-level feature
learning, which may lead to sub-optimal performance. A
reasonable solution is to integrate landmark identification and
landmark-based feature learning into a unified deep learning
framework, which will be one of our future works. Second and
more generally, the anatomical landmarks used in this study
were discovered in a data-driven manner. However, it remains
unknown which subset of landmarks is the most informative
for subsequent feature learning. Therefore, it could be inter-
esting to investigate an optimal subset of identified landmarks
for patch-based feature learning. As one of our future works,

we will let experts refine these landmarks to make the used
landmarks more compact. Besides, only the baseline MRI data
in three datasets (i.e., ADNI-1, ADNI-2, and MIRIAD) are
used in this work. In these datasets, there exist longitudinal
MRI data that may provide complementary information for
the proposed feature learning method. Furthermore, we learn
multiple CNN models (w.r.t. multiple landmarks) separately in
the current study, without considering the context information
(e.g., spatial locations) of those identified landmarks. Hence,
future work will cover the development of a joint deep learning
model by considering the landmarks jointly and globally.

V. CONCLUSION

In this paper, we propose a landmark based deep feature
learning (LDFL) framework, to automatically extract patch-
based representations from MR images for AD-related brain
disease diagnosis. Experimental results on three cohorts (i.e.,
ADNI-1, ADNI-2, and MIRIAD) demonstrate the effective-
ness of the proposed method in both tasks of disease classifi-
cation and MR image retrieval. This approach paves the way
to discriminative biomarkers for computer-aided diagnosis of
AD and the morphological analysis of MR images.
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